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Learning scenarios

ML develops generic methods for solving different types of problems:

• Supervised learning

Goal: learn from examples

• Unsupervised learning

Goal: learn from data alone, extract structure in the data

• Reinforcement learning

Goal: learn by exploring the environment (e.g. games or au-

tonomous vehicle)
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Learning scenarios
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Supervised learning
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Supervised learning, more formally

• Supervised learning: given a training sample (Xi ,Yi )1≤i≤n, the

goal is to “learn” a predictor fn such that

fn(Xi ) ≃ Yi︸ ︷︷ ︸
prediction on training data

and above all fn(Xnew) ≃ Ynew︸ ︷︷ ︸
prediction on test (unseen) data

• The nature of the output determines the type of supervised
learning task

◦ (classification) X ∈ Rd and Y ∈ {−1, 1}
◦ (regression) X ∈ Rd and Y ∈ R
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How to measure the performance of a predictor?

• Loss function in general: ℓ(Y , f (X )) measures the goodness

of the prediction of Y by f (X )

• Examples:

◦ (classification) Prediction loss: ℓ(Y , f (X )) = 1Y ̸=f (X )

◦ (regression) Quadratic loss: ℓ(Y , f (X )) = |Y − f (X )|2

• The performance of a predictor f in regression is usually

measured through the risk

Riskℓ(f ) = E
[
ℓ
(
Ynew, f (Xnew)

)]
• A minimizer f ⋆ of the risk is called a Bayes predictor

◦ (classification) f ⋆(X ) = argmaxkP(Y = k |X )

◦ (regression) f ⋆(X ) = E [Y |X ]
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Learning by minimizing the empirical risk

• We want to construct a predictor with a small risk

• or an estimator of the Bayes predictor f ⋆

• The distribution of the data is in general unknown, so is the

risk

• Instead, given some training samples (X1,Y1), . . . (Xn,Yn), find

the best predictor f that minimizes the empirical risk

R̂n(f ) :=
1

n

n∑
i=1

ℓ(Yi , f (Xi )).

• Learning means retrieving information from training data by

constructing a predictor that should have good performance on

new data
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There exist plenty of learners

see https://scikit-learn.org/stable/tutorial/machine learning map/index.html
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On the importance of quantifying uncertainty
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Reminder about quantiles

• Quantile level β ∈ [0, 1]

• QX (β) = inf{x ∈ R,P(X ≤ x) ≥ β} = inf{x ∈ R,FX (x) ≥
β}

• qβ(X1, . . . ,Xn) = ⌈β × n⌉− smallest value of (X1, . . . ,Xn)
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Median regression

• The Bayes predictor depends on the chosen loss function

• Mean Absolute Error (MAE) ℓ(Y ,Y ′) = |Y − Y ′|
• Associated risk Riskℓ(f ) = E [|Y − f (X )|]
• Bayes predictor f ⋆ ∈ argmin

f
Riskℓ(f )

f ⋆(X ) = median [Y |X ] = QY |X (0.5)
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Generalization: Quantile regression

• Quantile level β ∈ [0, 1]

• Pinball loss

ℓβ(Y ,Y ′) = β|Y−Y ′|1{|Y−Y ′|≥0}+(1−β)|Y−Y ′|1{|Y−Y ′|≤0}
• Associated risk Riskℓβ (f ) = E [ℓβ(Y , f (X ))]

• Bayes predictor f ⋆ ∈ argmin
f

Riskℓβ (f )

f ⋆(X ) = QY |X (β)
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Figure 1: Pinball losses
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Quantile regression

• Link between the pinball loss and the quantiles?

Set q⋆ := argmin
q

E
[
pinballβ(Y − q)

]
. Then,

0 =

∫ +∞

−∞
pinball′β(y − q)dfY (y)

= (β − 1)

∫ q

−∞
dfY (y) + β

∫ +∞

q
dfY (y)

= (β − 1)FY (q) + β(1− FY (q))

which gives

β = F (q⋆) ⇐⇒ q⋆ = F−1(β)
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Quantile regression
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Warning

No theoretical guarantee with a finite sample

P
(
Y ∈

[
Q̂Y |X (β/2); Q̂Y |X (1− β/2)

])
̸= 1− β
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Quantifying predictive uncertainty

• (X ,Y ) ∈ Rd ×R random variables

• n training samples (Xi ,Yi )
n
i=1

• Goal: predict an unseen point Yn+1 at Xn+1 with confidence

• How? Given a miscoverage level α ∈ [0, 1], build a predictive

set Cα such that:

P {Yn+1 ∈ Cα (Xn+1)} ≥ 1− α, (1)

and Cα should be as small as possible, in order to be informative

• Construction of the predictive intervals should be

◦ agnostic to the model

◦ agnostic to the data distribution

◦ valid in finite samples
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Some historical landmarks

• 1996-1999: Emergence of Conformal Prediction (CP)

• Makers: Vladimir Vovk, Alexander Gammerman, Vladimir Vap-

nik, Glenn Shafer

• Popularized (2014+) by Jing Lei and Larry Wasserman

• Recently (2019+), real spotlight thanks to Rina Barber, Em-

manuel Candès, Aaditya Ramdas and Ryan J. Tibshirani

• A good review can be found in Angelopoulos and Bates (2023)
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SCP in regression

Algorithm

1. Split randomly your training data into a proper training set (size

ntrain) and a calibration set (size ncal)

2. Train your algorithm Â on your proper training set

3. On the calibration set, get prediction values with Â

4. Obtain a set of ncal + 1 conformity scores:

S = {Si = |Â(Xi )− Yi |, i ∈ Cal} ∪ {+∞}
(+ worst-case scenario)

5. Compute the 1− α quantile of these scores, noted q1−α (S)
6. For a new point Xn+1, return

Ĉα(Xn+1) =
[
Â(Xn+1)− q1−α (S) ; Â(Xn+1) + q1−α (S)

]
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SCP in practice (splitting)
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SCP in practice (training)
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Y ▶ Learn µ̂ on the training

set
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SCP in practice (calibration)
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On the calibration set,

▶ Predict with µ̂

▶ Get the |residuals|
▶ Compute the (1 − α)

empirical quantile of the

|residuals|∪ {+∞}, noted
q1−α (residuals)
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SCP in practice (prediction)
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On the test set,

▶ Predict with µ̂

▶ Build Ĉα(x):
[µ̂(x)± q1−α (residuals)]
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SCP: implementation details

Algorithm 1

1. Split randomly your training data into a proper training set (size

ntrain) and a calibration set (size ncal)

2. Train your algorithm Â on your proper training set

3. On the calibration set, get prediction values with Â

4. Obtain a set of ncal + 1 conformity scores:

S = {Si = |Â(Xi )− Yi |, i ∈ Cal} ∪ {+∞}
(+ worst-case scenario)

5. Compute the 1− α quantile of these scores, noted q1−α (S)
6. For a new point Xn+1, return

Ĉα(Xn+1) = [Â(Xn+1)− q1−α (S); Â(Xn+1) + q1−α (S)]
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SCP: implementation details

Algorithm 2

1. Split randomly your training data into a proper training set (size

ntrain) and a calibration set (size ncal)

2. Train your algorithm Â on your proper training set

3. On the calibration set, get prediction values with Â

4. Obtain a set of ncal conformity scores:

S = {Si = |Â(Xi )− Yi |, i ∈ Cal}

5. Compute the (1−α)

(
1

ncal
+ 1

)
quantile of these scores, noted

q1−α (S)
6. For a new point Xn+1, return

Ĉα(Xn+1) = [Â(Xn+1)− q1−α (S); Â(Xn+1) + q1−α (S)]
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SCP in theory

Definition (Exchangeability)

(Xi ,Yi )
n
i=1 are exchangeable if for any permutation σ of

{1, . . . , n} we have:

L ((X1,Y1) , . . . , (Xn,Yn)) = L
((
Xσ(1),Yσ(1)

)
, . . . ,

(
Xσ(n),Yσ(n)

))
,

where L designates the joint distribution.

Examples of exchangeable sequences

• i.i.d. samples

• Gaussian samples w/ expectation m1d and covariance

γ2Idd + c1d×d
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SCP in theory, cont’d

This procedure enjoys the finite sample guarantee proposed and

proved in Vovk et al. (2005) and Lei et al. (2018).

Theorem

Suppose (Xi ,Yi )
n+1
i=1 are exchangeable (or i.i.d.). SCP applied on

(Xi ,Yi )
n
i=1 outputs an interval Ĉα (Xn+1) such that:

P
{
Yn+1 ∈ Ĉα (Xn+1)

}
≥ 1− α.

If, in addition, the scores {Si}i∈Cal are almost surely distinct, then

P
{
Yn+1 ∈ Ĉα (Xn+1)

}
≤ 1− α+

1

ncal + 1
.

✗ Marginal coverage: P
{
Yn+1 ∈ Ĉα (Xn+1)�����|Xn+1 = x

}
≥ 1− α
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Proof architecture of SCP guarantees

Lemma (Quantile lemma)

If (U1, . . . ,Un,Un+1) are exchangeable, then for any β ∈]0, 1[:
P (Un+1 ≤ qβ(U1, . . . ,Un,+∞)) ≥ β.

Additionally, if U1, . . . ,Un,Un+1 are almost surely distinct, then:

P (Un+1 ≤ qβ(U1, . . . ,Un,+∞)) ≤ β +
1

n + 1
.

Note that when (Xi ,Yi )
n+1
i=1 are exchangeable,

• the scores {Si}i∈Cal ∪ {Sn+1} are exchangeable,

• therefore applying the quantile lemma to the scores concludes

the proof.
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Proof of the quantile lemma

Un+1 ≤ qβ(U1, . . . ,Un,+∞) ⇐⇒ |{i : Ui ≤ Un+1}|
n + 1

≤ β

⇐⇒ rank(Un+1) ≤ 1 + β(n + 1)

Since rank(Un+1) ∼ U({1, . . . , n + 1}), one gets

P (rank(Un+1) ≤ 1 + β(n + 1)) =
⌊1 + β(n + 1)⌋

n + 1

≤ 1 + β(n + 1)

n + 1
= β +

1

n + 1

≥ β (still true w/ ties)
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Standard mean-regression SCP is not adaptive
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On the test set,

▶ Predict with µ̂

▶ Build Ĉα(x):
[µ̂(x)± q1−α (residuals)]
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(Naive) SCP is not adaptive

• Achtung! The conformal prediction procedure with the smallest

average set size is not necessarily the best

• A good conformal prediction procedure should give small sets

on easy inputs and large sets on hard inputs in a way that

faithfully reflects the model’s uncertainty

• This adaptivity is not implied by conformal prediction’s cover-

age guarantee

• But it is non-negotiable in practical deployments of conformal

prediction
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Conditional coverage implies adaptiveness

• Conditional coverage is stronger than marginal coverage

• Marginal coverage: P
{
Yn+1 ∈ Ĉα (Xn+1)

}
the errors may differ across regions of the input space (i.e. non-

adaptive)

• Conditional coverage: P
{
Yn+1 ∈ Ĉα (Xn+1) |Xn+1

}
errors are evenly distributed (i.e. fully adaptive)

no coverage marginal conditional
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But is conditional coverage possible?

• Impossibility results

↪→ Lei and Wasserman (2014); Vovk (2012); Barber et al. (2021a)

Without distribution assumption, in finite sample,

a perfectly conditionally valid Ĉα is such that

E[mes(Ĉα(x))] = ∞ for any non-atomic point x .

• Approximate conditional coverage

↪→ Romano et al. (2020); Guan (2022); Jung et al. (2023)

Target P(Yn+1 ∈ Ĉα|Xn+1 ∈ R(x)) ≥ 1− α

• Asymptotic (with the sample size) conditional coverage

↪→ Romano et al. (2019); Sesia and Romano (2021); Izbicki

et al. (2022)
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CQR (Romano et al., 2019)

Algorithm 1

1. Split randomly your training data into a proper training set (size

ntrain) and a calibration set (size ncal)

2. Train two algorithms Q̂Rα/2 and Q̂R1−α/2 on the proper train-

ing set

3. Obtain a set of ncal + 1 conformity scores S:
S = {Si = max

(
Q̂Rα/2(Xi )− Yi ,Yi − Q̂R1−α/2(Xi )

)
, i ∈ Cal} ∪ {+∞}

4. Compute the 1− α quantile of these scores, noted q1−α (S)
5. For a new point Xn+1, return

Ĉα(Xn+1) = [Q̂Rα/2(Xn+1)−q1−α (S); Q̂R1−α/2(Xn+1)+q1−α (S)]
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CQR (Romano et al., 2019)

Algorithm 2

1. Split randomly your training data into a proper training set (size

ntrain) and a calibration set (size ncal)

2. Train two algorithms Q̂Rα/2 and Q̂R1−α/2 on the proper train-

ing set

3. Obtain a set of ncal conformity scores S:
S = {Si = max

(
Q̂Rα/2(Xi )− Yi ,Yi − Q̂R1−α/2(Xi )

)
, i ∈ Cal} ∪����{+∞}

4. Compute the (1−α)

(
1

ncal
+ 1

)
quantile of these scores, noted

q1−α (S)
5. For a new point Xn+1, return

Ĉα(Xn+1) = [Q̂Rα/2(Xn+1)−q1−α (S); Q̂R1−α/2(Xn+1)+q1−α (S)]
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CQR in practice
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Randomly split the data to obtain a proper training set and a

calibration set. Keep the test set.

31 / 57



CQR in practice (training)
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Y ▶ Learn Q̂Rα/2 and

Q̂R1−α/2
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CQR in practice (calibration)
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▶ Predict with Q̂Rα/2

and Q̂R1−α/2

▶ Compute the scores

S = {Si}Cal∪{+∞}
▶ Get the (1 − α) em-

pirical quantile of the

Si , noted q1−α (S)

↪→ Si := max
{
Q̂Rα/2 (Xi )− Yi ,Yi − Q̂R1−α/2 (Xi )

}
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CQR in practice (prediction)

0 2 4
X
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Y ▶ Predict with Q̂Rα/2

and Q̂R1−α/2

▶ Build

Ĉα(x) = [Q̂Rα/2(x)− q1−α (S); Q̂R1−α/2(x) + q1−α (S)]
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CQR in theory

This procedure enjoys the finite sample guarantee proposed and

proved in Romano et al. (2019).

Theorem

Suppose (Xi ,Yi )
n+1
i=1 are exchangeable (or i.i.d.). CQR on (Xi ,Yi )

n
i=1

outputs Ĉα (Xn+1) such that:

P
{
Yn+1 ∈ Ĉα (Xn+1)

}
≥ 1− α.

If, in addition, the scores {Si}i∈Cal are almost surely distinct, then

P
{
Yn+1 ∈ Ĉα (Xn+1)

}
≤ 1− α+

1

ncal + 1
.

Proof: application of the quantile lemma.

✗ Marginal coverage: P
{
Yn+1 ∈ Ĉα (Xn+1)�����|Xn+1 = x

}
≥ 1− α
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SCP is defined by the conformity scores

1. Split randomly your training data into a proper training set (size

ntrain) and a calibration set (size ncal)

2. Train your algorithm Â on your proper training set

3. On the calibration set, obtain ncal + 1 conformity scores

S = {Si = s (Xi ,Yi ), i ∈ Cal} ∪ {+∞}
Ex 1: s (Xi ,Yi ) = |Â(Xi )− Yi | in regression with standard scores

Ex 2: s (Xi ,Yi ) = max
(
Q̂Rα/2(Xi )− Yi ,Yi − Q̂R1−α/2(Xi )

)
in

CQR

4. Compute the 1− α quantile of these scores, noted q1−α (S)
5. For a new point Xn+1, return

Ĉα(Xn+1) = {y such that s (Â(Xn+1), y) ≤ q1−α (S)}
↪→ The definition of the conformity scores is crucial, as they incor-

porate almost all the information: data + underlying model
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SCP: what choices for the regression scores?

Ĉα(Xn+1) = {y such that s (Â(Xn+1), y) ≤ q1−α (S)}

Standard SCP Locally weighted SCP CQR

Vovk et al. (2005) Lei et al. (2018) Romano et al. (2019)

s (X ,Y ) |Â(X )− Y | |Â(X )− Y |
ρ̂(X )

max(Q̂Rα/2(X )− Y ,

Y − Q̂R1−α/2(X ))

Ĉα(x)
[
Â(x)± q1−α (S)

] [
Â(x)± q1−α (S)ρ̂(x)

] [Q̂Rα/2(x)− q1−α (S);

Q̂R1−α/2(x) + q1−α (S)]
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SCP in classification

• Yi ∈ {1, . . . ,C} (C classes)

• Â(X ) = (p̂1(X ), . . . , p̂C (X )) (estimated probabilities)

• Score of the i-th calibration point: Si = 1− (Â(Xi ))Yi

• For a new point Xn+1, return

Ĉα(Xn+1) = {y such that s(Â(Xn+1), y) ≤ q1−α (S)}
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SCP in classification in practice

Ex: Yi ∈ {“dog”, “tiger”, “cat”}, with α = 0.1

• Scores on the calibration set

Cali

p̂dog(Xi )

p̂tiger(Xi )

p̂cat(Xi )

0.95

0.02

0.03

0.90

0.05

0.05

0.85

0.10

0.05

0.15

0.60

0.25

0.15

0.55

0.30

0.20

0.50

0.30

0.15

0.45

0.40

0.15

0.40

0.45

0.25

0.35

0.40

0.20

0.45

0.35

Si
0.05 0.1 0.15 0.40 0.45 0.50 0.55 0.55 0.6 0.65

• q1−α(S) = 0.65 ⌈0.9× (10 + 1)⌉ = 10

• Â(Xnew ) = (0.05, 0.60, 0.35)

↪→ s(Â(Xnew ), “dog”) = 0.95 “dog” /∈ Ĉα(Xnew )

↪→ s(Â(Xnew ), “tiger”) = 0.40 ≤ q1−α(S) “tiger” ∈ Ĉα(Xnew )

↪→ s(Â(Xnew ), “cat”) = 0.65 ≤ q1−α(S) “cat” ∈ Ĉα(Xnew )

• Ĉα(Xnew ) = {“tiger”, “cat”}
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SCP in classification in practice

Ex: Yi ∈ {“dog”, “tiger”, “cat”}, with α = 0.1

• Scores on the calibration set

Cali

p̂dog(Xi )

p̂tiger(Xi )

p̂cat(Xi )

0.95

0.02

0.03

0.90

0.05

0.05

0.85

0.10

0.05

0.05

0.85

0.10

0.05

0.80

0.15

0.05

0.75

0.20

0.05

0.70

0.25

0.10

0.25

0.65

0.10

0.30

0.60

0.15

0.30

0.55

Si
0.05 0.1 0.15 0.15 0.20 0.25 0.30 0.35 0.40 0.45

• q1−α(S) = 0.45 ⌈0.9× (10 + 1)⌉ = 10

• Â(Xnew ) = (0.05, 0.60, 0.35)

↪→ s(Â(Xnew ), “dog”) = 0.95 “dog” /∈ Ĉα(Xnew )

↪→ s(Â(Xnew ), “tiger”) = 0.40 ≤ q1−α(S) “tiger” ∈ Ĉα(Xnew )

↪→ s(Â(Xnew ), “cat”) = 0.65 “cat” /∈ Ĉα(Xnew )

• Ĉα(Xnew ) = {“tiger”}
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SCP in classification: comments on the naive version

• Facts about the previous method

◦ prediction sets with the smallest average size

◦ undercover hard subgroups

◦ overcover easy ones

• Other types of scores can be used to improve the conditional

coverage (as in regression with CQR or localized)

41 / 57



SCP in classification: Adaptive Prediction Sets

1. Sort in decreasing order p̂σi (1)(Xi ) ≥ . . . ≥ p̂σi (C)(Xi )

2. Si =

σ−1
i (Yi )∑
k=1

p̂σi (k)(Xi ) (sum of the estimated probabilities associated

to classes at least as large as that of the true class Yi )

3. Return the classes σnew(1), . . . , σnew(r
⋆) where

r⋆ = argmax
1≤r≤C

{
r∑

k=1

p̂σnew(k)(Xnew) < q1−α(S)
}

+ 1
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SCP in classification in practice: Adaptive Prediction Sets

Ex: Yi ∈ {“dog”, “tiger”, “cat”}, with α = 0.1

• Scores on the calibration set

Cali

p̂dog(Xi )

p̂tiger(Xi )

p̂cat(Xi )

0.95

0.02

0.03

0.90

0.05

0.05

0.85

0.10

0.05

0.05

0.85

0.10

0.05

0.80

0.15

0.05

0.75

0.20

0.10

0.75

0.15

0.25

0.40

0.35

0.10

0.30

0.60

0.15

0.30

0.55

Si
0.95 0.90 0.85 0.85 0.80 0.75 0.75 0.75 0.60 0.55

• q1−α(S) = 0.95

• Ex 1: Â(Xnew ) = (0.05, 0.45, 0.5), r⋆ = 2

Ĉα(Xnew ) = {“tiger”, “cat”}
• Ex 2: Â(Xnew ) = (0.03, 0.95, 0.02), r⋆ = 1

Ĉα(Xnew ) = {“tiger”}
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Split Conformal prediction: summary

• Simple procedure which

◦ quantifies the uncertainty of a predictive model Â

◦ by returning predictive regions

• Adapted to any predictive algorithm (neural nets, random fo-

rests...)

• Distribution-free as long as the data are exchangeable (and so

are the scores)

• Finite-sample guarantees

• Marginal theoretical guarantee over the joint distribution of

(X ,Y ), and not conditional, i.e., no guarantee that ∀x ∈ R:
P
{
Yn+1 ∈ Ĉα (Xn+1)�����|Xn+1 = x

}
≥ 1− α.

(despite some heuristics)
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Challenges: open questions

• Conditional coverage (Previous Sec.)

• Exchangeability (Last Sec.: distribution shift)

• Computational cost vs. statistics power (Next Sec.: Jackknife)
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Beyond the limitations of SCP

• SCP is computationally attractive: it only requires fitting the

model one time
• Problem: it sacrifices statistical efficiency

◦ requiring splitting the data into training and calibration

datasets

⇝ Full (or transductive) conformal prediction
◦ avoids data splitting

◦ at the cost of many more model fits

• Historically, full conformal prediction was developed first

• Idea: we know that the true label Yn+1 lives somewhere in Y
so if we loop over all possible y ∈ Y, then we will eventually

hit the data point (Xn+1,Yn+1), which is statistically plausible

with the first n data points

• Hence the name as full conformal prediction directly computes

this loop
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Full conformal prediction

Method: for a candidate (Xnew, y),

1. Train the algorithm Ây on

{(X1,Y1), . . . , (Xn,Yn)} ∪ {(Xnew, y)}
2. Scores

S(train) =
{
s(Ây (Xi ),Yi )

}
∪ {s(Ây (Xnew), y)}

3. y ∈ Ĉα(Xnew) if s(Ây (Xnew), y) ≤ q1−α(S)

✓ Theoretical guarantees (provided that Â handles exchangeable

training data in a symmetric way)

✗ Computationally costly: not used in practice
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Other methods for conformal prediction

︸ ︷︷ ︸
Quantile Out Of Bag (QOOB, Gupta et al., 2022)
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Jackknife: naive predictive interval

• Based on leave-one-out (LOO) residuals

• Dn = {(X1,Y1), . . . , (Xn,Yn)} training data

• Train Â−i on Dn \ (Xi ,Yi )

• LOO scores S =
{
|Â−i (Xi )− Yi |

}
i
∪ {+∞} (in standard reg)

• Train Â on Dn

• Build the predictive interval:
[
Â(Xn+1)± q1−α(S)

]
Warning

No guarantee on the prediction of Â with scores based on (Â−i )i
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Jackknife+ (Barber et al., 2021b)

• Based on leave-one-out (LOO) residuals

• Dn = {(X1,Y1), . . . , (Xn,Yn)} training data

• Train Â−i on Dn \ (Xi ,Yi )

• LOO predictions (in standard reg)

Sup/down =
{
Â−i (Xn+1)± |Â−i (Xi )− Yi |

}
i
∪ {±∞}

• Build the predictive interval:
[
qα/2(Sdown); q1−α/2(Sup)

]
Theorem

If Dn ∪ (Xnew,Ynew) are exchangeable and the algorithm treats the data

points symmetrically, then P(Ynew ∈ Ĉα(Xnew)) ≥ 1− 2α.
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CV+ (Barber et al., 2021b)

• Based on cross-validation residuals

• Dn = {(X1,Y1), . . . , (Xn,Yn)} training data

1. Split Dn into K folds F1, . . . ,FK

2. Train Â−Fk
on Dn \ Fk

3. Cross-val predictions (in standard reg)

Sup/down =

{{
Â−Fk

(Xn+1)± |Â−Fk
(Xi )− Yi |

}
i∈Fk

}
k

∪ {±∞}

4. Build the predictive interval: [qα(Sdown); q1−α(Sup)]

Theorem

Under data exchangeability and algorithm symmetry, then

P(Ynew ∈ Ĉα(Xnew)) ≥ 1− 2α−min

(
2(1− 1/K )

n/K + 1
,
1− K/n

K + 1

)
≥ 1− 2α−

√
2/n.
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Exchangeability does not hold in many practical applications

• CP requires exchangeable data points to ensure validity

✗ Covariate shift, i.e. LX changes but LY |X stays constant

✗ Label shift, i.e. LY changes but LX |Y stays constant

✗ Arbitrary distribution shift

✗ Possibly many shifts, not only one
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Covariate shift (Tibshirani et al., 2019)

• Setting:

◦ (X1,Y1), . . . , (Xn,Yn)
i.i.d.∼ PX × PY |X

◦ (Xn+1,Yn+1) ∼ P̃X × PY |X

• Idea: give more importance to calibration points that are

closer in distribution to the test point

• In practice:

1. estimate the likelihood ratio w(Xi ) =
dP̃X (Xi )

dPX (Xi )

2. normalize the weights, i.e. ωi = ω(Xi ) =
w(Xi )∑n+1
j=1 w(Xj)

3. outputs Ĉα(Xn+1) ={
y : s(Â(Xn+1), y) ≤ q1−α ({ωiSi}i∈Cal ∪ {+∞})

}
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Label shift (Podkopaev and Ramdas, 2021)

• Setting:

◦ (X1,Y1), . . . , (Xn,Yn)
i.i.d.∼ PX |Y × PY

◦ (Xn+1,Yn+1) ∼ PX |Y × P̃Y

◦ Classification

• Idea: give more importance to calibration points that are

closer in distribution to the test point

• Trouble: the actual test labels are unknown

• In practice:

1. estimate the likelihood ratio w(Yi ) =
dP̃Y (Yi )

dPY (Yi )
using algorithms

from the existing label shift literature

2. normalize the weights, i.e. ωy
i = ωy (Xi ) =

w(Yi )∑n
j=1 w(Yj) + w(y)

3. outputs Ĉα(Xn+1) =
{
y : s(Â(Xn+1), y) ≤ q1−α ({ωy

i Si}i∈Cal ∪ {+∞})
}
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Generalizations

• Arbitrary distribution shift: Cauchois et al. (2020) leverages

ideas from the distributionally robust optimization literature

• Two major general theoretical results beyond exchangeability:

◦ Chernozhukov et al. (2018)

↪→ If the learnt model is accurate and the data noise is

strongly mixing, then CP is valid asymptotically ✓

◦ Barber et al. (2022)

↪→ Quantifies the coverage loss depending on the strength of

exchangeability violation

P(Yn+1 ∈ Ĉα(Xn+1)) ≥ 1− α− average violation of exchangeability
by each calibration point

↪→ proposed algorithm: reweighting again!

e.g., in a temporal setting, give higher weights to more recent

points.
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Online setting

• Data: T0 random variables (X1,Y1), . . . , (XT0 ,YT0) in R
d ×R

• Aim: predict the response values as well as predictive intervals

for T1 subsequent observations XT0+1, . . . ,XT0+T1 sequentially:

at any prediction step t ∈ JT0 + 1,T0 + T1K, Yt−T0 , . . . ,Yt−1

have been revealed

• Build the smallest interval Ĉt
α such that:

P
{
Yt ∈ Ĉt

α (Xt)
}
≥ 1− α, for t ∈ JT0 + 1,T0 + T1K.
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Recent developments

• Consider splitting strategies that respect the temporal structure

• Gibbs and Candès (2021) propose a method which reacts faster
to temporal evolution

◦ Idea: track the previous coverages of the predictive intervals

(1{Yt ∈ Ĉα(Xt)})
◦ Tool: update the empirical quantile level with a learning rate γ

◦ Asymptotic guarantee (on average) for any distribution (even

adversarial)

• Zaffran et al. (2022) studies the influence of this learning rate γ

and proposes, along with Gibbs and Candès (2022), a method

that does not require to choose γ
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