Uncertainty Quantification for Machine Learning algorithms An introduction to Conformal Prediction

Claire Boyer Margaux Zaffran 25-04-2023

MASPIN Days at FEMTO-ST

Machine learning context

Quantile Regression

Split Conformal Prediction (SCP)

Jackknife/cross-val

Beyond exchangeability

ML develops generic methods for solving different types of problems:

- Supervised learning Goal: learn from examples
- Unsupervised learning Goal: learn from data alone, extract structure in the data
- Reinforcement learning Goal: learn by exploring the environment (e.g. games or autonomous vehicle)

Learning scenarios

Supervised learning

• Supervised learning: given a training sample $(X_i, Y_i)_{1 \le i \le n}$, the goal is to "learn" a predictor f_n such that $f_n(X_i) \simeq Y_i \quad \text{and above all} \quad f_n(X_{\text{new}}) \simeq Y_{\text{new}}$

prediction on training data

prediction on test (unseen) data

- The nature of the output determines the type of supervised learning task
 - (classification) $X \in \mathbb{R}^d$ and $Y \in \{-1, 1\}$
 - $\circ \text{ (regression)} \qquad X \in \mathbb{R}^d \text{ and } Y \in \mathbb{R}$

How to measure the performance of a predictor?

- Loss function in general: l(Y, f(X)) measures the goodness of the prediction of Y by f(X)
- Examples:
 - (classification) Prediction loss: $\ell(Y, f(X)) = \mathbf{1}_{Y \neq f(X)}$
 - (regression) Quadratic loss: $\ell(Y, f(X)) = |Y f(X)|^2$
- The performance of a predictor *f* in regression is usually measured through the risk

$$\mathsf{Risk}_{\ell}(f) = \mathbb{E}\Big[\ell\big(Y_{\mathsf{new}}, f(X_{\mathsf{new}})\big)\Big]^{\ell}$$

- A minimizer f^* of the risk is called a Bayes predictor
 - (classification) $f^{\star}(X) = \operatorname{argmax}_{k} \mathbb{P}(Y = k | X)$
 - (regression) $f^{\star}(X) = \mathbb{E}[Y|X]$

Learning by minimizing the empirical risk

- We want to construct a predictor with a small risk
- or an estimator of the Bayes predictor f^{\star}
- The distribution of the data is in general unknown, so is the risk
- Instead, given some training samples (X₁, Y₁), ... (X_n, Y_n), find the best predictor f that minimizes the empirical risk

$$\hat{\mathcal{R}}_n(f) := \frac{1}{n} \sum_{i=1}^n \ell(Y_i, f(X_i)).$$

• Learning means retrieving information from training data by constructing a predictor that should have good performance on new data

There exist plenty of learners

see https://scikit-learn.org/stable/tutorial/machine_learning_map/index.html

On the importance of quantifying uncertainty

Machine learning context

Quantile Regression

Split Conformal Prediction (SCP)

Jackknife/cross-val

Beyond exchangeability

- Quantile level $\beta \in [0, 1]$
- $Q_X(\beta) = \inf\{x \in \mathbb{R}, \mathbb{P}(X \le x) \ge \beta\} = \inf\{x \in \mathbb{R}, F_X(x) \ge \beta\}$
- $q_{\beta}(X_1, \ldots, X_n) = \lceil \beta \times n \rceil$ smallest value of (X_1, \ldots, X_n)

Median regression

- The Bayes predictor depends on the chosen loss function
- Mean Absolute Error (MAE) $\ell(Y, Y') = |Y Y'|$
- Associated risk $\operatorname{Risk}_{\ell}(f) = \mathbb{E}\left[|Y f(X)|\right]$
- Bayes predictor $f^* \in \operatorname{argmin} \operatorname{Risk}_{\ell}(f)$

 $f^{\star}(X) = \text{median}\left[Y|X\right] = Q_{Y|X}(0.5)$

Generalization: Quantile regression

- Quantile level $\beta \in [0,1]$
- Pinball loss

 $\ell_{\beta}(Y,Y') = \beta |Y - Y'| \mathbb{1}_{\{|Y - Y'| \ge 0\}} + (1 - \beta) |Y - Y'| \mathbb{1}_{\{|Y - Y'| \le 0\}}$

- Associated risk $\operatorname{Risk}_{\ell_{\beta}}(f) = \mathbb{E}\left[\ell_{\beta}(Y, f(X))\right]$
- Bayes predictor $f^* \in \underset{f}{\operatorname{argmin}} \operatorname{Risk}_{\ell_{\beta}}(f)$

Figure 1: Pinball losses

• Link between the pinball loss and the quantiles? Set $q^* := \underset{q}{\operatorname{arg\,min}} \mathbb{E}\left[\operatorname{pinball}_{\beta}(Y-q)\right]$. Then, $0 = \int_{-\infty}^{+\infty} \operatorname{pinball}'_{\beta}(y-q) df_{Y}(y)$ $= (\beta - 1) \int_{-\infty}^{q} df_{Y}(y) + \beta \int_{q}^{+\infty} df_{Y}(y)$ $= (\beta - 1) F_{Y}(q) + \beta (1 - F_{Y}(q))$

which gives

$$\beta = F(q^{\star}) \iff q^{\star} = F^{-1}(\beta)$$

Quantile regression

Warning

No theoretical guarantee with a finite sample

$$\mathbb{P}\left(Y\in\left[\hat{Q}_{Y|X}(eta/2);\hat{Q}_{Y|X}(1-eta/2)
ight]
ight)
eq1-eta$$

Machine learning context

Quantile Regression

Split Conformal Prediction (SCP) Standard regression case Conformalized Quantile Regression (CQR) Generalization of SCP: going beyond regression

Jackknife/cross-val

Beyond exchangeability

- $(X, Y) \in \mathbb{R}^d \times \mathbb{R}$ random variables
- *n* training samples $(X_i, Y_i)_{i=1}^n$
- Goal: predict an unseen point Y_{n+1} at X_{n+1} with confidence
- How? Given a miscoverage level $\alpha \in [0,1]$, build a predictive set \mathcal{C}_{α} such that:

$$\mathbb{P}\left\{Y_{n+1}\in\mathcal{C}_{\alpha}\left(X_{n+1}\right)\right\}\geq1-\alpha,$$
(1)

and \mathcal{C}_{α} should be as small as possible, in order to be informative

- Construction of the predictive intervals should be
 - agnostic to the model
 - agnostic to the data distribution
 - valid in finite samples

- 1996-1999: Emergence of Conformal Prediction (CP)
- Makers: Vladimir Vovk, Alexander Gammerman, Vladimir Vapnik, Glenn Shafer
- Popularized (2014+) by Jing Lei and Larry Wasserman
- Recently (2019+), real spotlight thanks to Rina Barber, Emmanuel Candès, Aaditya Ramdas and Ryan J. Tibshirani
- A good review can be found in Angelopoulos and Bates (2023)

SCP in regression

Training set

Algorithm

- 1. Split randomly your training data into a proper training set (size n_{train}) and a calibration set (size n_{cal})
- 2. Train your algorithm \hat{A} on your proper training set
- 3. On the calibration set, get prediction values with \hat{A}
- 4. Obtain a set of $n_{cal} + 1$ conformity scores:

$$\mathcal{S} = \{S_i = |\hat{A}(X_i) - Y_i|, i \in \operatorname{Cal}\} \cup \{+\infty\}$$

(+ worst-case scenario)

- 5. Compute the 1α quantile of these scores, noted $q_{1-\alpha}(\mathcal{S})$
- 6. For a new point X_{n+1} , return $\widehat{\mathcal{C}}_{\alpha}(X_{n+1}) = \left[\widehat{\mathcal{A}}(X_{n+1}) - q_{1-\alpha}(\mathcal{S}); \widehat{\mathcal{A}}(X_{n+1}) + q_{1-\alpha}(\mathcal{S})\right]$

SCP in practice (splitting)

SCP in practice (training)

SCP in practice (calibration)

On the calibration set,

- ▶ Predict with $\hat{\mu}$
- ► Get the residuals
- ► Compute the (1α) empirical quantile of the |residuals| \cup {+∞}, noted $q_{1-\alpha}$ (residuals)

SCP in practice (prediction)

On the test set,

- ▶ Predict with $\hat{\mu}$
- ► Build $\widehat{\mathcal{C}}_{\alpha}(x)$: $[\widehat{\mu}(x) \pm q_{1-\alpha} \text{ (residuals)}]$

SCP: implementation details

Training set

Algorithm 1

- 1. Split randomly your training data into a proper training set (size n_{train}) and a calibration set (size n_{cal})
- 2. Train your algorithm \hat{A} on your proper training set
- 3. On the calibration set, get prediction values with \hat{A}
- 4. Obtain a set of $n_{cal} + 1$ conformity scores:

$$\mathcal{S} = \{S_i = |\hat{A}(X_i) - Y_i|, i \in \operatorname{Cal}\} \cup \{+\infty\}$$

(+ worst-case scenario)

- 5. Compute the 1α quantile of these scores, noted $q_{1-\alpha}(S)$
- 6. For a new point X_{n+1} , return $\widehat{\mathcal{C}}_{\alpha}(X_{n+1}) = [\widehat{\mathcal{A}}(X_{n+1}) - q_{1-\alpha}(\mathcal{S}); \widehat{\mathcal{A}}(X_{n+1}) + q_{1-\alpha}(\mathcal{S})]$

SCP: implementation details

Training set

Algorithm 2

- 1. Split randomly your training data into a proper training set (size n_{train}) and a calibration set (size n_{cal})
- 2. Train your algorithm \hat{A} on your proper training set
- 3. On the calibration set, get prediction values with \hat{A}
- 4. Obtain a set of n_{cal} conformity scores:

$$\mathcal{S} = \{S_i = |\hat{A}(X_i) - Y_i|, i \in \operatorname{Cal}\}$$

5. Compute the
$$(1-\alpha)\left(\frac{1}{n_{cal}}+1\right)$$
 quantile of these scores, noted $q_{1-\alpha}(S)$

6. For a new point X_{n+1} , return $\widehat{\mathcal{C}}_{\alpha}(X_{n+1}) = [\widehat{A}(X_{n+1}) - q_{1-\alpha}(\mathcal{S}); \widehat{A}(X_{n+1}) + q_{1-\alpha}(\mathcal{S})]$ 21/57

Definition (Exchangeability)

 $(X_i, Y_i)_{i=1}^n$ are exchangeable if for any permutation σ of $\{1, \ldots, n\}$ we have:

$$\mathcal{L}\left(\left(X_{1}, Y_{1}\right), \ldots, \left(X_{n}, Y_{n}\right)\right) = \mathcal{L}\left(\left(X_{\sigma(1)}, Y_{\sigma(1)}\right), \ldots, \left(X_{\sigma(n)}, Y_{\sigma(n)}\right)\right),$$

where $\ensuremath{\mathcal{L}}$ designates the joint distribution.

Examples of exchangeable sequences

- i.i.d. samples
- Gaussian samples w/ expectation $m\mathbbm{1}_d$ and covariance $\gamma^2\mathrm{Id}_d + c\mathbbm{1}_{d\times d}$

This procedure enjoys the finite sample guarantee proposed and proved in Vovk et al. (2005) and Lei et al. (2018).

Theorem

Suppose $(X_i, Y_i)_{i=1}^{n+1}$ are exchangeable (or i.i.d.). SCP applied on $(X_i, Y_i)_{i=1}^n$ outputs an interval $\widehat{\mathcal{C}}_{\alpha}(X_{n+1})$ such that: $\mathbb{P}\left\{Y_{n+1} \in \widehat{\mathcal{C}}_{\alpha}(X_{n+1})\right\} \ge 1 - \alpha.$ If, in addition, the scores $\{S_i\}_{i \in Cal}$ are almost surely distinct, then $\mathbb{P}\left\{Y_{n+1} \in \widehat{\mathcal{C}}_{\alpha}(X_{n+1})\right\} \le 1 - \alpha + \frac{1}{n_{cal} + 1}.$

× Marginal coverage: $\mathbb{P}\left\{Y_{n+1} \in \widehat{\mathcal{C}}_{\alpha}\left(X_{n+1}\right) | X_{n+1} = x\right\} \geq 1 - \alpha$

Lemma (Quantile lemma)

If $(U_1, \ldots, U_n, U_{n+1})$ are exchangeable, then for any $\beta \in]0, 1[:$ $\mathbb{P}(U_{n+1} \leq q_{\beta}(U_1, \ldots, U_n, +\infty)) \geq \beta.$

Additionally, if $U_1, \ldots, U_n, U_{n+1}$ are almost surely distinct, then: $\mathbb{P}(U_{n+1} \leq q_{\beta}(U_1, \ldots, U_n, +\infty)) \leq \beta + \frac{1}{n+1}.$

Note that when $(X_i, Y_i)_{i=1}^{n+1}$ are exchangeable,

- the scores $\{S_i\}_{i\in\mathrm{Cal}}\cup\{S_{n+1}\}$ are exchangeable,
- therefore applying the quantile lemma to the scores concludes the proof.

$$\begin{split} \mathcal{U}_{n+1} &\leq q_{\beta}(\mathcal{U}_{1}, \dots, \mathcal{U}_{n}, +\infty) \Longleftrightarrow \frac{|\{i : \mathcal{U}_{i} \leq \mathcal{U}_{n+1}\}|}{n+1} \leq \beta \\ &\iff \operatorname{rank}(\mathcal{U}_{n+1}) \leq 1 + \beta(n+1) \\ \operatorname{Since rank}(\mathcal{U}_{n+1}) \sim \mathcal{U}(\{1, \dots, n+1\}), \text{ one gets} \\ &\mathbb{P}\left(\operatorname{rank}(\mathcal{U}_{n+1}) \leq 1 + \beta(n+1)\right) = \frac{\lfloor 1 + \beta(n+1) \rfloor}{n+1} \\ &\leq \frac{1 + \beta(n+1)}{n+1} = \beta + \frac{1}{n+1} \\ &\geq \beta \qquad (\text{still true w/ ties}) \end{split}$$

On the test set,

- ▶ Predict with $\hat{\mu}$
- ► Build $\widehat{\mathcal{C}}_{\alpha}(x)$: $[\widehat{\mu}(x) \pm q_{1-\alpha} \text{ (residuals)}]$

- Achtung! The conformal prediction procedure with the smallest average set size is not necessarily the best
- A good conformal prediction procedure should give small sets on easy inputs and large sets on hard inputs in a way that faithfully reflects the model's uncertainty
- This adaptivity is not implied by conformal prediction's coverage guarantee
- But it is non-negotiable in practical deployments of conformal prediction

Conditional coverage implies adaptiveness

- Conditional coverage is stronger than marginal coverage
- Marginal coverage: $\mathbb{P}\left\{Y_{n+1} \in \widehat{\mathcal{C}}_{\alpha}(X_{n+1})\right\}$ the errors may differ across regions of the input space (i.e. non-adaptive)
- Conditional coverage: $\mathbb{P}\left\{Y_{n+1} \in \widehat{\mathcal{C}}_{\alpha}\left(X_{n+1}\right) | X_{n+1}\right\}$ errors are evenly distributed (i.e. fully adaptive)

• Impossibility results

 \hookrightarrow Lei and Wasserman (2014); Vovk (2012); Barber et al. (2021a)

Without distribution assumption, in finite sample, a perfectly conditionally valid $\widehat{\mathcal{C}}_{\alpha}$ is such that $\mathbb{E}[\operatorname{mes}(\widehat{\mathcal{C}}_{\alpha}(x))] = \infty$ for any non-atomic point x.

• Approximate conditional coverage

 \hookrightarrow Romano et al. (2020); Guan (2022); Jung et al. (2023) Target $\mathbb{P}(Y_{n+1} \in \widehat{\mathcal{C}}_{\alpha} | X_{n+1} \in \mathcal{R}(x)) \ge 1 - \alpha$

Asymptotic (with the sample size) conditional coverage
 → Romano et al. (2019); Sesia and Romano (2021); Izbicki et al. (2022)

Algorithm 1

- 1. Split randomly your training data into a proper training set (size n_{train}) and a calibration set (size n_{cal})
- 2. Train two algorithms $\widehat{QR}_{\alpha/2}$ and $\widehat{QR}_{1-\alpha/2}$ on the proper training set
- 3. Obtain a set of $n_{cal} + 1$ conformity scores S:

 $\mathcal{S} = \{S_i = \max\left(\widehat{QR}_{\alpha/2}(X_i) - Y_i, Y_i - \widehat{QR}_{1-\alpha/2}(X_i)\right), i \in \operatorname{Cal}\} \cup \{+\infty\}$

- 4. Compute the 1α quantile of these scores, noted $q_{1-\alpha}(S)$
- 5. For a new point X_{n+1} , return $\widehat{\mathcal{C}}_{\alpha}(X_{n+1}) = [\widehat{QR}_{\alpha/2}(X_{n+1}) - q_{1-\alpha}(\mathcal{S}); \widehat{QR}_{1-\alpha/2}(X_{n+1}) + q_{1-\alpha}(\mathcal{S})]$

Algorithm 2

- 1. Split randomly your training data into a proper training set (size n_{train}) and a calibration set (size n_{cal})
- 2. Train two algorithms $\widehat{QR}_{\alpha/2}$ and $\widehat{QR}_{1-\alpha/2}$ on the proper training set
- 3. Obtain a set of n_{cal} conformity scores S:

 $\mathcal{S} = \{S_i = \max\left(\widehat{QR}_{\alpha/2}(X_i) - Y_i, Y_i - \widehat{QR}_{1-\alpha/2}(X_i)\right), i \in \operatorname{Cal}\} \cup \{\pm \infty\}$

- 4. Compute the $(1-\alpha)\left(\frac{1}{n_{cal}}+1\right)$ quantile of these scores, noted $q_{1-\alpha}(\mathcal{S})$
- 5. For a new point X_{n+1} , return $\widehat{\mathcal{C}}_{\alpha}(X_{n+1}) = [\widehat{QR}_{\alpha/2}(X_{n+1}) - q_{1-\alpha}(\mathcal{S}); \widehat{QR}_{1-\alpha/2}(X_{n+1}) + q_{1-\alpha}(\mathcal{S})]$

Randomly split the data to obtain a proper training set and a calibration set. Keep the test set.

CQR in practice (training)

CQR in practice (calibration)

- Predict with $\widehat{QR}_{\alpha/2}$ and $\widehat{QR}_{1-\alpha/2}$
- Compute the scores $S = \{S_i\}_{Cal} \cup \{+\infty\}$
- Get the (1α) empirical quantile of the S_i , noted $q_{1-\alpha}(S)$

$$\hookrightarrow S_i := \max\left\{\widehat{QR}_{\alpha/2}(X_i) - Y_i, Y_i - \widehat{QR}_{1-\alpha/2}(X_i)\right\}$$

CQR in practice (prediction)

Build

 $\widehat{\mathcal{C}}_{\alpha}(x) = \left[\widehat{QR}_{\alpha/2}(x) - q_{1-\alpha}(\mathcal{S}); \widehat{QR}_{1-\alpha/2}(x) + q_{1-\alpha}(\mathcal{S})\right]$

This procedure enjoys the finite sample guarantee proposed and proved in Romano et al. (2019).

Theorem

Suppose $(X_i, Y_i)_{i=1}^{n+1}$ are exchangeable (or i.i.d.). CQR on $(X_i, Y_i)_{i=1}^n$ outputs $\widehat{\mathcal{C}}_{\alpha}(X_{n+1})$ such that: $\mathbb{P}\left\{Y_{n+1} \in \widehat{\mathcal{C}}_{\alpha}(X_{n+1})\right\} \ge 1 - \alpha$. If, in addition, the scores $\{S_i\}_{i \in \text{Cal}}$ are almost surely distinct, then $\mathbb{P}\left\{Y_{n+1} \in \widehat{\mathcal{C}}_{\alpha}(X_{n+1})\right\} \le 1 - \alpha + \frac{1}{n_{cal} + 1}$.

Proof: application of the quantile lemma.

X Marginal coverage:
$$\mathbb{P}\left\{Y_{n+1}\in\widehat{\mathcal{C}}_{\alpha}\left(X_{n+1}\right)|X_{n+1}=x\right\}\geq 1-\alpha$$

SCP is defined by the conformity scores

- 1. Split randomly your training data into a proper training set (size n_{train}) and a calibration set (size n_{cal})
- 2. Train your algorithm \hat{A} on your proper training set
- 3. On the calibration set, obtain $n_{cal} + 1$ conformity scores $S = \{S_i = s(X_i, Y_i), i \in Cal\} \cup \{+\infty\}$

Ex 1: $\mathbf{s}(X_i, Y_i) = |\hat{A}(X_i) - Y_i|$ in regression with standard scores Ex 2: $\mathbf{s}(X_i, Y_i) = \max\left(\overline{QR}_{\alpha/2}(X_i) - Y_i, Y_i - \overline{QR}_{1-\alpha/2}(X_i)\right)$ in CQR

4. Compute the $1 - \alpha$ quantile of these scores, noted $q_{1-\alpha}(S)$

5. For a new point
$$X_{n+1}$$
, return
 $\widehat{C}_{\alpha}(X_{n+1}) = \{y \text{ such that } \mathbf{s}(\widehat{A}(X_{n+1}), y) \leq q_{1-\alpha}(S)\}$

 \hookrightarrow The definition of the conformity scores is crucial, as they incorporate almost all the information: data + underlying model

SCP: what choices for the regression scores?

$$\widehat{\mathcal{C}}_{\alpha}(X_{n+1}) = \{ y \text{ such that } \mathbf{s}\left(\widehat{\mathcal{A}}(X_{n+1}), y\right) \leq q_{1-\alpha}\left(\mathcal{S}\right) \}$$

	Standard SCP	Locally weighted SCP	CQR				
	Vovk et al. (2005)	Lei et al. (2018)	Romano et al. (2019)				
s (X, Y)	$ \hat{A}(X) - Y $	$\frac{ \hat{A}(X) - Y }{\hat{a}(X)}$	$\max(\widehat{QR}_{\alpha/2}(X) - Y,$				
		$\rho(\Lambda)$	$Y - QR_{1-\alpha/2}(X))$				
$\widehat{C}_{\alpha}(\mathbf{x})$	$\left[\hat{A}(x) + q_{1} \circ (S)\right]$	$\left[\hat{A}(x) + q_1 - q_1(S)\hat{\rho}(x)\right]$	$[QR_{\alpha/2}(x)-q_{1-\alpha}(S);$				
$\mathbf{c}_{\alpha}(\mathbf{x})$	$\left[\left[\left(\alpha \right) + q_{1} - \alpha \left(\mathbf{C} \right) \right] \right]$	$\left[\left(\left(x \right) + \left(1 - \alpha \right) \right) \right]$	$\widehat{QR}_{1-\alpha/2}(x) + q_{1-\alpha}(\mathcal{S})$				
Visu.	0 2 4 X	0 2 4 X	0 2 4 X				
\checkmark	black-box around a	black-box around a	adaptive				
	"usable" prediction	"usable" prediction					
×	not adaptive	limited adaptiveness	no black-box around a				
			"usable" prediction				

- $Y_i \in \{1, \ldots, C\}$ (C classes)
- $\hat{A}(X) = (\hat{p}_1(X), \dots, \hat{p}_C(X))$ (estimated probabilities)
- Score of the *i*-th calibration point: $S_i = 1 (\hat{A}(X_i))_{Y_i}$
- For a new point X_{n+1} , return $\widehat{C}_{\alpha}(X_{n+1}) = \{y \text{ such that } s(\widehat{A}(X_{n+1}), y) \leq q_{1-\alpha}(S)\}$

SCP in classification in practice

Ex: $Y_i \in \{\text{``dog''}, \text{``tiger''}, \text{``cat''}\}$, with $\alpha = 0.1$

• Scores on the calibration set

								_		
Cal_i		1.9		S)-	and the second		CA.	1	No.	a star
$\hat{p}_{dog}(X_i)$	0.95	0.90	0.85	0.15	0.15	0.20	0.15	0.15	0.25	0.20
$\hat{p}_{tiger}(X_i)$	0.02	0.05	0.10	0.60	0.55	0.50	0.45	0.40	0.35	0.45
$\hat{\mathbf{p}}_{cat}(X_i)$	0.03	0.05	0.05	0.25	0.30	0.30	0.40	0.45	0.40	0.35
-	0.05	0.1	0.15	0.40	0.45	0.50	0.55	0.55	0.6	0.65
Si										

•
$$q_{1-\alpha}(S) = 0.65$$

• $\hat{A}(X_{new}) = (0.05, 0.60, 0.35)$
 $\hookrightarrow s(\hat{A}(X_{new}), \text{"dog"}) = 0.95$
 $\hookrightarrow s(\hat{A}(X_{new}), \text{"tiger"}) = 0.40 \le q_{1-\alpha}(S)$
 $\hookrightarrow s(\hat{A}(X_{new}), \text{"cat"}) = 0.65 \le q_{1-\alpha}(S)$
• $\hat{C}_{\alpha}(X_{new}) = \{\text{"tiger"}, \text{"cat"}\}$

Ex: $Y_i \in \{\text{"dog"}, \text{"tiger"}, \text{"cat"}\}$, with $\alpha = 0.1$

• Scores on the calibration set

Cal_i		1		- Maria				1		9. K.
$\hat{p}_{dog}(X_i)$	0.95	0.90	0.85	0.05	0.05	0.05	0.05	0.10	0.10	0.15
$\hat{p}_{tiger}(X_i)$	0.02	0.05	0.10	0.85	0.80	0.75	0.70	0.25	0.30	0.30
$\hat{p}_{cat}(X_i)$	0.03	0.05	0.05	0.10	0.15	0.20	0.25	0.65	0.60	0.55
C	0.05	0.1	0.15	0.15	0.20	0.25	0.30	0.35	0.40	0.45
S_i										

•
$$q_{1-\alpha}(S) = 0.45$$

• $\hat{A}(X_{new}) = (0.05, 0.60, 0.35)$
 $\hookrightarrow s(\hat{A}(X_{new}), \text{"dog"}) = 0.95$
 $\hookrightarrow s(\hat{A}(X_{new}), \text{"tiger"}) = 0.40 \le q_{1-\alpha}(S)$
 $\hookrightarrow s(\hat{A}(X_{new}), \text{"cat"}) = 0.65$
• $\hat{C}_{\alpha}(X_{new}) = \{\text{"tiger"}\}$

- Facts about the previous method
 - $\circ\;$ prediction sets with the smallest average size
 - undercover hard subgroups
 - $\circ~$ overcover easy ones
- Other types of scores can be used to improve the conditional coverage (as in regression with CQR or localized)

SCP in classification: Adaptive Prediction Sets

1. Sort in decreasing order $\hat{p}_{\sigma_i(1)}(X_i) \ge \ldots \ge \hat{p}_{\sigma_i(C)}(X_i)$

2. $S_i = \sum_{k=1}^{\sigma_i^{-1}(Y_i)} \hat{p}_{\sigma_i(k)}(X_i)$ (sum of the estimated probabilities associated

to classes at least as large as that of the true class Y_i)

3. Return the classes $\sigma_{\text{new}}(1), \dots, \sigma_{\text{new}}(r^*)$ where $r^* = \operatorname*{arg\,max}_{1 \leq r \leq C} \left\{ \sum_{k=1}^r \hat{p}_{\sigma_{\text{new}}(k)}(X_{\text{new}}) < q_{1-\alpha}(S) \right\} + 1$

Ex: $Y_i \in \{\text{``dog''}, \text{``tiger''}, \text{``cat''}\}$, with $\alpha = 0.1$

• Scores on the calibration set

Cal_i		1.	0	\$		-		1		4.
$\hat{p}_{dog}(X_i)$	0.95	0.90	0.85	0.05	0.05	0.05	0.10	0.25	0.10	0.15
$\hat{\boldsymbol{\rho}}_{tiger}(X_i)$	0.02	0.05	0.10	0.85	0.80	0.75	0.75	0.40	0.30	0.30
$\hat{\boldsymbol{\rho}}_{cat}(X_i)$	0.03	0.05	0.05	0.10	0.15	0.20	0.15	0.35	0.60	0.55
	0.95	0.90	0.85	0.85	0.80	0.75	0.75	0.75	0.60	0.55
S_i										

• $q_{1-\alpha}(\mathcal{S}) = 0.95$

• Ex 1:
$$\hat{A}(X_{new}) = (0.05, 0.45, 0.5), r^* = 2$$

 $\hat{C}_{\alpha}(X_{new}) = \{\text{"tiger", "cat"}\}$
• Ex 2: $\hat{A}(X_{new}) = (0.03, 0.95, 0.02), r^* = 1$

 $\widehat{\mathcal{C}}_{\alpha}(X_{new}) = \{$ "tiger" $\}$

Split Conformal prediction: summary

- Simple procedure which
 - $\circ\,$ quantifies the uncertainty of a predictive model \hat{A}
 - $\circ~$ by returning predictive regions
- Adapted to any predictive algorithm (neural nets, random forests...)
- Distribution-free as long as the data are exchangeable (and so are the scores)
- Finite-sample guarantees
- Marginal theoretical guarantee over the joint distribution of (X, Y), and not conditional, i.e., no guarantee that $\forall x \in \mathbb{R}$: $\mathbb{P}\left\{Y_{n+1} \in \widehat{\mathcal{C}}_{\alpha}\left(X_{n+1}\right) | X_{n+1} = x\right\} \ge 1 - \alpha.$ (despite same barrieties)

(despite some heuristics)

- Conditional coverage
 (Previous Sec.)
- Exchangeability (Last Sec.: distribution shift)
- Computational cost vs. statistics power (Next Sec.: Jackknife)

Machine learning context

Quantile Regression

Split Conformal Prediction (SCP)

Jackknife/cross-val

Beyond exchangeability

Beyond the limitations of SCP

- SCP is computationally attractive: it only requires fitting the model one time
- Problem: it sacrifices statistical efficiency
 - requiring splitting the data into training and calibration datasets
- → Full (or transductive) conformal prediction
 - $\circ~$ avoids data splitting
 - $\circ\;$ at the cost of many more model fits
 - Historically, full conformal prediction was developed first
 - Idea: we know that the true label Y_{n+1} lives somewhere in \mathcal{Y} so if we loop over all possible $y \in \mathcal{Y}$, then we will eventually hit the data point (X_{n+1}, Y_{n+1}) , which is statistically plausible with the first *n* data points
 - Hence the name as full conformal prediction directly computes this loop

Method: for a candidate (X_{new}, y) ,

- 1. Train the algorithm \hat{A}_y on $\{(X_1, Y_1), \dots, (X_n, Y_n)\} \cup \{(X_{new}, y)\}$
- 2. Scores

$$\mathcal{S}^{(\text{train})} = \left\{ s(\hat{A}_y(X_i), Y_i) \right\} \cup \left\{ s(\hat{A}_y(X_{\text{new}}), y) \right\}$$

3. $y \in \widehat{\mathcal{C}}_{\alpha}(X_{\text{new}}) \text{ if } s(\hat{A}_y(X_{\text{new}}), y) \leq q_{1-\alpha}(\mathcal{S})$

- Theoretical guarantees (provided that handles exchangeable training data in a symmetric way)
- X Computationally costly: not used in practice

Other methods for conformal prediction

Jackknife: naive predictive interval

• Based on leave-one-out (LOO) residuals

- $\mathcal{D}_n = \{(X_1, Y_1), \dots, (X_n, Y_n)\}$ training data
- Train \hat{A}_{-i} on $\mathcal{D}_n \setminus (X_i, Y_i)$
- LOO scores $S = \left\{ |\hat{A}_{-i}(X_i) Y_i| \right\}_i \cup \{+\infty\}$ (in standard reg)
- Train \hat{A} on \mathcal{D}_n
- Build the predictive interval: $\left[\hat{A}(X_{n+1}) \pm q_{1-\alpha}(S)\right]$

Warning

No guarantee on the prediction of \hat{A} with scores based on $(\hat{A}_{-i})_i$

Jackknife+ (Barber et al., 2021b)

• Based on leave-one-out (LOO) residuals

- $\mathcal{D}_n = \{(X_1, Y_1), \dots, (X_n, Y_n)\}$ training data
- Train \hat{A}_{-i} on $\mathcal{D}_n \setminus (X_i, Y_i)$
- LOO predictions (in standard reg) $S_{up/down} = \left\{ \hat{A}_{-i}(X_{n+1}) \pm |\hat{A}_{-i}(X_i) - Y_i| \right\}_i \cup \{\pm \infty\}$
- Build the predictive interval: $\left[q_{lpha/2}(\mathcal{S}_{\mathsf{down}}); q_{1-lpha/2}(\mathcal{S}_{\mathsf{up}})\right]$

Theorem

If $\mathcal{D}_n \cup (X_{new}, Y_{new})$ are exchangeable and the algorithm treats the data points symmetrically, then $\mathbb{P}(Y_{new} \in \widehat{\mathcal{C}}_{\alpha}(X_{new})) \geq 1 - 2\alpha$.

CV+ (Barber et al., 2021b)

- Based on cross-validation residuals
- $\mathcal{D}_n = \{(X_1, Y_1), \dots, (X_n, Y_n)\}$ training data
- 1. Split \mathcal{D}_n into K folds F_1, \ldots, F_K
- 2. Train \hat{A}_{-F_k} on $\mathcal{D}_n \setminus F_k$
- 3. Cross-val predictions (in standard reg) $S_{up/down} = \left\{ \left\{ \hat{A}_{-F_k}(X_{n+1}) \pm |\hat{A}_{-F_k}(X_i) - Y_i| \right\}_{i \in F_k} \right\}_k \cup \{\pm \infty\}$
- 4. Build the predictive interval: $[q_{\alpha}(\mathcal{S}_{down}); q_{1-\alpha}(\mathcal{S}_{up})]$

Theorem

Under data exchangeability and algorithm symmetry, then $\mathbb{P}(Y_{new} \in \widehat{\mathcal{C}}_{\alpha}(X_{new})) \geq 1 - 2\alpha - \min\left(\frac{2(1-1/K)}{n/K+1}, \frac{1-K/n}{K+1}\right) \geq 1 - 2\alpha - \sqrt{2/n}.$ Machine learning context

Quantile Regression

Split Conformal Prediction (SCP)

Jackknife/cross-val

Beyond exchangeability

- CP requires exchangeable data points to ensure validity
 X Covariate shift, i.e. L_X changes but L_{Y|X} stays constant
 X Label shift, i.e. L_Y changes but L_{X|Y} stays constant
 X Arbitrary distribution shift
- × Possibly many shifts, not only one

Covariate shift (Tibshirani et al., 2019)

- Setting:
 - $\circ (X_1, Y_1), \dots, (X_n, Y_n) \overset{i.i.d.}{\sim} P_X \times P_{Y|X}$ $\circ (X_{n+1}, Y_{n+1}) \sim \tilde{P}_X \times P_{Y|X}$
- Idea: give more importance to calibration points that are closer in distribution to the test point
- In practice:

1. estimate the likelihood ratio $w(X_i) = \frac{\mathrm{d}P_X(X_i)}{\mathrm{d}P_X(X_i)}$

2. normalize the weights, i.e. $\omega_i = \omega(X_i) = \frac{w(X_i)}{\sum_{i=1}^{n+1} w(X_i)}$

3. outputs $\widehat{\mathcal{C}}_{\alpha}(X_{n+1}) = \left\{ y : s(\widehat{A}(X_{n+1}), y) \le q_{1-\alpha} \left(\{ \omega_i S_i \}_{i \in \operatorname{Cal}} \cup \{ +\infty \} \right) \right\}$

Label shift (Podkopaev and Ramdas, 2021)

- Setting:
 - $\circ (X_1, Y_1), \ldots, (X_n, Y_n) \overset{i.i.d.}{\sim} P_{X|Y} \times P_Y$
 - $\circ (X_{n+1}, Y_{n+1}) \sim P_{X|Y} \times \tilde{P}_Y$
 - Classification
- Idea: give more importance to calibration points that are closer in distribution to the test point
- Trouble: the actual test labels are unknown
- In practice:
 - 1. estimate the likelihood ratio $w(Y_i) = \frac{d\tilde{P}_Y(Y_i)}{dP_Y(Y_i)}$ using algorithms from the existing label shift literature

2. normalize the weights, i.e. $\omega_i^y = \omega^y(X_i) = \frac{w(Y_i)}{\sum_{i=1}^n w(Y_i) + w(y)}$

3. outputs $\widehat{\mathcal{C}}_{\alpha}(X_{n+1}) = \left\{ y : s(\widehat{A}(X_{n+1}), y) \leq q_{1-\alpha}\left(\{ \omega_i^y S_i \}_{i \in \operatorname{Cal}} \cup \{ +\infty \} \right) \right\}$

- Arbitrary distribution shift: Cauchois et al. (2020) leverages ideas from the distributionally robust optimization literature
- Two major general theoretical results beyond exchangeability:
 - Chernozhukov et al. (2018)
 → If the learnt model is accurate and the data noise is strongly mixing, then CP is valid asymptotically ✓
 - Barber et al. (2022)

 \hookrightarrow Quantifies the coverage loss depending on the strength of exchangeability violation

 $\mathbb{P}(Y_{n+1} \in \widehat{\mathcal{C}}_{\alpha}(X_{n+1})) \geq 1 - \alpha - \overset{\text{average violation of exchangeability}}{\text{by each calibration point}} \\ \hookrightarrow \text{ proposed algorithm: reweighting again!}$

e.g., in a temporal setting, give higher weights to more recent points.

- Data: T_0 random variables $(X_1, Y_1), \ldots, (X_{T_0}, Y_{T_0})$ in $\mathbb{R}^d \times \mathbb{R}$
- Aim: predict the response values as well as predictive intervals for T_1 subsequent observations $X_{T_0+1}, \ldots, X_{T_0+T_1}$ sequentially: at any prediction step $t \in [\![T_0 + 1, T_0 + T_1]\!]$, $Y_{t-T_0}, \ldots, Y_{t-1}$ have been revealed
- Build the smallest interval $\widehat{\mathcal{C}}_{\alpha}^{t}$ such that: $\mathbb{P}\left\{Y_{t}\in\widehat{\mathcal{C}}_{\alpha}^{t}\left(X_{t}\right)\right\}\geq1-\alpha, \text{ for } t\in[\![T_{0}+1,T_{0}+T_{1}]\!].$

- Consider splitting strategies that respect the temporal structure
- Gibbs and Candès (2021) propose a method which reacts faster to temporal evolution
 - Idea: track the previous coverages of the predictive intervals $(1{Y_t ∈ \hat{C}_{\alpha}(X_t)})$
 - $\circ~$ Tool: update the empirical quantile level with a learning rate γ
 - Asymptotic guarantee (on average) for any distribution (even adversarial)
- Zaffran et al. (2022) studies the influence of this learning rate γ and proposes, along with Gibbs and Candès (2022), a method that does not require to choose γ

- Angelopoulos, A. N. and Bates, S. (2023). Conformal prediction: A gentle introduction. Foundations and Trends® in Machine Learning, 16(4):494–591.
- Barber, R. F., Candès, E. J., Ramdas, A., and Tibshirani, R. J. (2021a). The limits of distribution-free conditional predictive inference. *Information and Inference: A Journal of the IMA*, 10(2):455–482.
- Barber, R. F., Candès, E. J., Ramdas, A., and Tibshirani, R. J. (2021b). Predictive inference with the jackknife+. *The Annals* of Statistics, 49(1):486–507.
- Barber, R. F., Candès, E. J., Ramdas, A., and Tibshirani, R. J. (2022). Conformal prediction beyond exchangeability. To appear in *Annals of Statistics (2023)*.

- Cauchois, M., Gupta, S., Ali, A., and Duchi, J. C. (2020). Robust Validation: Confident Predictions Even When Distributions Shift. arXiv:2008.04267 [cs, stat]. arXiv: 2008.04267.
- Chernozhukov, V., Wüthrich, K., and Yinchu, Z. (2018). Exact and Robust Conformal Inference Methods for Predictive Machine Learning with Dependent Data. In *Conference On Learning Theory*, pages 732–749. PMLR. ISSN: 2640-3498.
- Gibbs, I. and Candès, E. (2021). Adaptive conformal inference under distribution shift. In Advances in Neural Information Processing Systems, volume 34, pages 1660–1672.
- Gibbs, I. and Candès, E. (2022). Conformal inference for online prediction with arbitrary distribution shifts.

- Guan, L. (2022). Localized conformal prediction: a generalized inference framework for conformal prediction. *Biometrika*, 110(1):33–50.
- Gupta, C., Kuchibhotla, A. K., and Ramdas, A. (2022). Nested conformal prediction and quantile out-of-bag ensemble methods. *Pattern Recognition*, 127:108496.
- Izbicki, R., Shimizu, G., and Stern, R. B. (2022). Cd-split and hpd-split: Efficient conformal regions in high dimensions. *Journal of Machine Learning Research*, 23(87):1–32.
- Jung, C., Noarov, G., Ramalingam, R., and Roth, A. (2023). Batch multivalid conformal prediction. In *International Conference on Learning Representations*.

- Lei, J., G'Sell, M., Rinaldo, A., Tibshirani, R. J., and Wasserman,L. (2018). Distribution-Free Predictive Inference for Regression.*Journal of the American Statistical Association*.
- Lei, J. and Wasserman, L. (2014). Distribution-free prediction bands for non-parametric regression. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 76(1):71–96.
- Podkopaev, A. and Ramdas, A. (2021). Distribution-free uncertainty quantification for classification under label shift. In Proceedings of the Thirty-Seventh Conference on Uncertainty in Artificial Intelligence, volume 161, pages 844–853. PMLR.

- Romano, Y., Barber, R. F., Sabatti, C., and Candès, E. (2020).
 With Malice Toward None: Assessing Uncertainty via Equalized Coverage. *Harvard Data Science Review*, 2(2).
- Romano, Y., Patterson, E., and Candès, E. (2019). Conformalized Quantile Regression. *Advances in Neural Information Processing Systems*, 32.
- Sesia, M. and Romano, Y. (2021). Conformal prediction using conditional histograms. In Advances in Neural Information Processing Systems, volume 34, pages 6304–6315.
- Tibshirani, R. J., Barber, R. F., Candès, E., and Ramdas, A. (2019). Conformal Prediction Under Covariate Shift. Advances in Neural Information Processing Systems, 32:11.

- Vovk, V. (2012). Conditional Validity of Inductive Conformal Predictors. In Asian Conference on Machine Learning, pages 475–490. PMLR. ISSN: 1938-7228.
- Vovk, V., Gammerman, A., and Shafer, G. (2005). *Algorithmic Learning in a Random World*. Springer US.
- Zaffran, M., Féron, O., Goude, Y., Josse, J., and Dieuleveut, A. (2022). Adaptive conformal predictions for time series. In *Proceedings of the 39th International Conference on Machine Learning*, volume 162, pages 25834–25866. PMLR.