May 20–24, 2025
Montréal
This tutorial aims to provide a statistical perspective on physics-informed learning methods, with a focus on both theoretical understanding and practical implementation.
Claire Boyer
Professor, Université Paris-Saclay
Nathan Doumèche
PhD Candidate, EDF & Sorbonne Université
Day | Time | Program |
---|---|---|
Tuesday |
Lectures I & II: A Statistical Perspective on PINNs Lecture notes Additional slides |
|
Wednesday |
Practical session I: Implementing PINNs Notebook: [.ipynb] [display] Correction: [.ipynb] [display] Lecture III: A primer on kernel methods (Part I) Lecture notes |
|
Thursday |
Lecture IV: A primer on kernel methods (Part II) Lecture notes |
|
Friday |
Practical session II: Implementing kernel methods Notebook: [.ipynb] [display] Correction: [.ipynb] [display] Lecture V: Physics-informed kernel learning Lecture notes Additional slides |
|
Saturday |
Practical session III: Implementing physics-informed kernels methods Notebook: [.ipynb] [display] Correction: [.ipynb] [display] |
This introductory notebook provides an overview of Colab's features.